트렌드 직선의 비밀(선형회귀) #3
이 글은 2022.05.11 - [수학의 재미] - 트렌드 직선의 비밀(선형회귀) #2 트렌드 직선의 비밀(선형회귀) #2 이 글은 2022.05.10 - [수학의 재미] - 트렌드 직선의 비밀(선형회귀) 에서 이어집니다. $n$개의 데이터 $(x_1,y_1), (x_2,y_2),\cdot, (x_n,y_n)$ 이 있고, 이 데이터를 잘 설명하는 직선의 식을 $y=ax+b$라 할.. sine-qua-none.tistory.com ㅏ에서 이어집니다. 잠깐 복습을 하면 $n$개의 데이터 $(x_1,y_1),\cdots, (x_n,y_n)$ 의 트렌드를 잘 설명하는 직선을 $y=ax+b$ 라 했을 때, $$ \begin{align} \sum_{i=1}^n x_i(y_i-(ax_i+b)) & =0 \tag{1}..
2022. 5. 12.
트렌드 직선의 비밀(선형회귀) #2
이 글은 2022.05.10 - [수학의 재미] - 트렌드 직선의 비밀(선형회귀) 에서 이어집니다. $n$개의 데이터 $(x_1,y_1), (x_2,y_2),\cdot, (x_n,y_n)$ 이 있고, 이 데이터를 잘 설명하는 직선의 식을 $y=ax+b$라 할 때 우리의 목적은 $$f(a,b) = \sum_{i=1}^n (y_i -(ax_i+b))^2 $$ 를 최소로 하는 $a$와 $b$를 찾는 것입니다. 최솟값을 찾을 땐 보통 미분을 하여 미분값이 0이 되는 점을 찾습니다. 하지만 위의 식은 $a,b$ 이변수 함수인데도 가능할까요? 가능합니다. 대신 미분값이 성분이 2개인 벡터로 표시됩니다. 이를 gradient라 하고 다음처럼 정의합니다. $$\nabla f(a,b) = \Big( \frac{\part..
2022. 5. 11.